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1 Entropy Rate, Markov Processes, and Data Compression
for Sequences

1.1 Entropy rate

Last time, we introduced the entropy rate of a stationary stochastic process. If X is a
finite or countably infinite set, a stationary stochastic process is a sequence of random
variables (Xk)∞k=−∞ with the property that

P(Xk = x0, Xk+1 = x1, . . . , Xk+t = xt)

does not depend on k (for all t ≥ 0, x0, . . . , xt). The entropy rate of the process is the
limit

lim
n→∞

1

n
H(X1, . . . , Xn),

where the limit exists because H(X1) ≥ H(X2 | X1) ≥ · · · ≥ H(Xn | X1, . . . , Xn−1), and
in fact,

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
H(Xn | X1, . . . , Xn−1)

because of the chain rule, H(X1, . . . , Xn) = H(X1) + H(X2 | X1) + · · · + H(Xn | Xn−1
1 ).

We can think of the entropy rate as the asymptotic amount of information we learn from
the next random variable in the sequence.

Observe that

p(x1, . . . , xt) = p(x1)p(x2 | x1) · · · p(xt | x1, . . . , xt−1).

For large t and k < t,

p(x1)p(x2 | x1) · · · p(xk | x1, . . . , xk−1)
t−k∏
j=1

p(xk+j | xk+j−t−1, . . . , xk+j−1)
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might be a decent approximation from a modeling point of view. This defines a (k−1)-order
stationary Markov process.

A first order Markov process1 is defined by the transition probabilities p(x2 | x1)
for x1, x2 ∈X and an initial distribution (p(x), x ∈X ). A stationary Markov process
is defined by the transition probabilities and a probability distribution (π(x), x ∈X ) such
that

∑
x∈X π(x)p(y | x) = π(y) for all y ∈X . This would mean that

p(x1, . . . , xt) = π(x1)p(x2 | x1)p(x3 | x2) · · · p(xt | xt−1).

For a k-th order Markov process, we need p(xk+1 | x1, . . . , xk) with xi ∈ X and i =
1, . . . , k + 1 and an initial distribution (p(x1, . . . , xk), xk1 ∈X k). For stationarity, we need
a distribution (π(x1, . . . , xk), xk1 ∈X k) such that∑

x1

π(x1, . . . , xk)p(xk+1 | x1, . . . , xk) = π(x2, . . . , xk+1).

The entropy rate for a stationary Markov process is H(X2 | X1), while the entropy rate
for a k-th order stationary Markov process is

H(Xk+1 | X1, . . . , Xk) =
∑

x1,...,xk

π(x1, . . . , xk)H((p(xk+1 | x1, . . . , xk), xk+1 ∈X )).

For k = 1, this is

H(X2 | X1) = −
∑
x,y

π(x)p(y | x) log p(y | x)

1.2 Time reversal and reversible Markov processes

An important class of examples is reversible stationary Markov processes.

Definition 1.1. A stationary Markov process is reversible if

π(x)p(y | x) = π(y)p(x | y) ∀x, y ∈X .

For a general stationary Markov chain depending on the transition probability matrix
[p(y | x)]x,y∈X and stationary distribution (π(x), x ∈X ), one can define

p̃(y | x) :=
π(y)p(x | y)

π(x)

(assuming π(x) > 0 for all x ∈X ). Then∑
y∈X

p̃(y | x) =

∑
y∈X π(y)p(x | y)

π(x)
=
π(x)

π(x)
= 1

1For finite or countable state spaces, these are often referred to as “Markov chains.”
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and ∑
x∈X

π(x)p̃(y | x) =
∑
x∈X

π(y)p(x | y) = π(x),

so [p̃(y | x)]x,y∈X defines a transition probability matrix with stationary distribution
(π(x), x ∈ X ). This is called the time reversal of the original process. A Markov
process is time reversible if and only if its time reversal has the same joint distributions as
as the original process.

Example 1.1. Stationary random walks on weighted graphs give rise to examples.

At any time t, Xt belongs to the set of vertices, and

P(Xt+1 = j | Xt = i) =
wi,j∑

k∈V wi,k
.

The stationary distribution will be

π(i) =

∑
j∈V wi,j

2
∑

i,j wi,j
,

and this process is reversible.
This is of huge importance in algorithms, and it has connections to resistive network

theory.2

1.3 Overview of data compression for sequences

The next 2-3 lectures will be about various schemes for lossless data compression. The goal
is to represent observed data efficiently (using as few bits/symbols as possible). We have
already seen, for example, that if X1, X2, . . . are iid with marginal distribution (p(x), x ∈

2This is covered in a book by Doyle and Snell called Random Walks and Electrical Networks.
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X ), there exists an encoding map en : X n → {0, 1}∗ \ {∅} and a decompression map
dn : {0, 1}∗ \ {∅} →X n (for each n ≥ 1) such that dn ◦ en is the identity map and

1

n
E[length(en(X1, . . . , Xn))] ≤ H + ε.

Morover, we have also seen that for any en : X n → {0, 1}∗ \ {∅} and dn : {0, 1}∗ \ {∅} →
X n with dn ◦ en = id, for any ε > 0,

1

n
E[length(en(X1, . . . , Xn))] ≥ H − ε.

There is a book called Handbook of Data Compression by Salamon which discusses this.3

We would like a version of this for stationary processes. We’ll see this as we go along,
but here are some big picture facts related to this.

We cannot get an analog of the Strong Law of Large Numbers for stationary processes
without assuming an additional condition called ergodicity which excludes examples like
p(. . . , X0 = 1, . . . , Xt = 1) = P(X0 = 0, . . . , Xt = 0) = 1/2 for all t ≥ 0.

For a stationary ergodic process, we have (under some conditions) the pointwise ergodic
theorem:

Theorem 1.1 (Pointwise ergodic theorem, Birkhoff). Let (Xk)∞k=−∞ be a stationary, er-
godic process with random variables taking values in X . Given f : X → R,

lim
n→∞

1

n

n∑
i=1

f(Xi) = E[f(X1)]

almost surely.

But even this is not enough for us to replace the Strong Law of Large Numbers applied
to information densities. We need a further statement:

Theorem 1.2 (Shannon-McMillan-Breiman). If (Xk)∞k=−∞ is a stationary, ergodic pro-
cess,

lim
n→∞

− 1

n
log p(X1, . . . , Xn) = entropy rate of process

almost surely.

From a practical point of viewpoint, en : X n → {0, 1}∗ \ {∅} needs to be construc-
tion from “smaller pieces.” For example, start with e : X → {0, 1}∗ \ {∅} and define
en(x1, . . . , xn) = e(x1)e(x2) · · · e(xn). This function e needs to be 1 to 1 for invertibility.
But even if e : X → {0, 1}∗ \ {∅} is 1 to 1, en might not be.

3The book is on the order of 1000 pages long.
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Example 1.2. Let X = {1, 2, 3} with e(1) = 0, e(2) = 00, and e(3) = 1. Then

e3(12) = 000, e3(21) = 000.

Definition 1.2. e : X → {0, 1}∗ \ {∅} is called uniquely decodable if each en is one to
one.

One way to get this property is to make e instantaneous (or prefix-free) if no e(x)
is a prefix of e(y) for x 6= y.

Example 1.3. If X = {1, 2, 3, 4}, we can take

e(1) = 1, e(2) = 01, e(3) = 001, e(4) = 000.
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